Friday 22 April 2016

>> The history of Modern Piano

In the period from about 1790 to 1860, the Mozart-era piano underwent tremendous changes that led to the modern form of the instrument. This revolution was in response to a preference by composers and pianists for a more powerful, sustained piano sound, and made possible by the ongoing Industrial Revolution with resources such as high-quality piano wire for strings, and precision casting for the production of massive iron frames that could withstand the tremendous tension of the strings. Over time, the tonal range of the piano was also increased from the five octaves of Mozart's day to the seven octave (or more) range found on modern pianos.

Early technological progress in the late 1700s owed much to the firm of Broadwood. John Broadwood joined with another Scot, Robert Stodart, and a Dutchman, Americus Backers, to design a piano in the harpsichord case—the origin of the "grand". They achieved this in about 1777. They quickly gained a reputation for the splendour and powerful tone of their instruments, with Broadwood constructing pianos that were progressively larger, louder, and more robustly constructed. They sent pianos to both Joseph Haydn and Ludwig van Beethoven, and were the first firm to build pianos with a range of more than five octaves: five octaves and a fifth (interval) during the 1790s, six octaves by 1810 (Beethoven used the extra notes in his later works), and seven octaves by 1820. The Viennese makers similarly followed these trends; however the two schools used different piano actions: Broadwoods used a more robust action, whereas Viennese instruments were more sensitive.


By the 1820s, the center of piano innovation had shifted to Paris, where the Pleyel firm manufactured pianos used by Frédéric Chopin and the Érard firm manufactured those used by Franz Liszt. In 1821, Sébastien Érard invented the double escapement action, which incorporated a repetition lever (also called the balancier) that permitted repeating a note even if the key had not yet risen to its maximum vertical position. This facilitated rapid playing of repeated notes, a musical device exploited by Liszt. When the invention became public, as revised by Henri Herz, the double escapement action gradually became standard in grand pianos, and is still incorporated into all grand pianos currently produced in the 2000s.

Other improvements of the mechanism included the use of felt hammer coverings instead of layered leather or cotton. Felt, which was first introduced by Jean-Henri Pape in 1826, was a more consistent material, permitting wider dynamic ranges as hammer weights and string tension increased. The sostenuto pedal (see below), invented in 1844 by Jean-Louis Boisselot and copied by the Steinway firm in 1874, allowed a wider range of effects.

One innovation that helped create the powerful sound of the modern piano was the use of a strong, cast iron frame. Also called the "plate", the iron frame sits atop the soundboard, and serves as the primary bulwark against the force of string tension that can exceed 20 tons in a modern grand. The single piece cast iron frame was patented in 1825 in Boston by Alpheus Babcock, combining the metal hitch pin plate (1821, claimed by Broadwood on behalf of Samuel Hervé) and resisting bars (Thom and Allen, 1820, but also claimed by Broadwood and Érard). Babcock later worked for the Chickering & Mackays firm who patented the first full iron frame for grand pianos in 1843. Composite forged metal frames were preferred by many European makers until the American system was fully adopted by the early 20th century.

The increased structural integrity of the iron frame allowed the use of thicker, tenser, and more numerous strings. In 1834, the Webster & Horsfal firm of Birmingham brought out a form of piano wire made from cast steel; according to Dolge it was "so superior to the iron wire that the English firm soon had a monopoly." But a better steel wire was soon created in 1840 by the Viennese firm of Martin Miller, and a period of innovation and intense competition ensued, with rival brands of piano wire being tested against one another at international competitions, leading ultimately to the modern form of piano wire. 


Other important advances included changes to the way the piano is strung, such as the use of a "choir" of three strings rather than two for all but the lowest notes, and the implementation of an over-strung scale, in which the strings are placed in two separate planes, each with its own bridge height. (This is also called cross-stringing. Whereas earlier instruments' bass strings were a mere continuation of a single string plane, over-stringing placed the bass bridge behind and to the treble side of the tenor bridge area. This crossed the strings, with the bass strings in the higher plane.) This permitted a much narrower cabinet at the "nose" end of the piano, and optimized the transition from unwound tenor strings to the iron or copper-wrapped bass strings. Over-stringing was invented by Pape during the 1820s, and first patented for use in grand pianos in the United States by Henry Steinway, Jr. in 1859.

Some piano makers developed schemes to enhance the tone of each note. Julius Blüthner developed Aliquot stringing in 1893 as well as Pascal Taskin (1788),  and Collard & Collard (1821). These systems were used to strengthen the tone of the highest register of notes on the piano, which up till this time were viewed as being too weak-sounding. Each used more distinctly ringing, undamped vibrations of sypathetically vibrating strings to add to the tone, except the Blüthner Aliquot stringing, which uses an additional fourth string in the upper two treble sections. 

While the hitchpins of these separately suspended Aliquot strings are raised slightly above the level of the usual tri-choir strings, they are not struck by the hammers but rather are damped by attachments of the usual dampers. Eager to copy these effects, Theodore Steinway invented duplex scaling, which used short lengths of non-speaking wire bridged by the "aliquot" throughout much of upper the range of the piano, always in locations that caused them to vibrate sympathetically in conformity with their respective overtones—typically in doubled octaves and twelfths.

The mechanical action structure of the upright piano was invented in London, England in 1826 by Robert Wornum, and upright models became the most popular model. Upright pianos took less space than a grand piano, and as such they were a better size for use in private homes for domestic music-making and practice.
(source)